Theo tin tức vào ngày 2 tháng 1, Andrew Kang, một đối tác tại Mechanism Capital, đã đăng trên nền tảng X rằng vào năm 2025, lĩnh vực robot sẽ giải quyết các thách thức về kiến trúc mô hình và đào tạo lâu dài, đồng thời đạt được tiến bộ đáng kể trong công nghệ thu thập dữ liệu, hiểu chất lượng dữ liệu và xây dựng dữ liệu, giúp các công ty trí tuệ nhân tạo tự tin rằng cuối cùng họ sẽ bắt đầu đầu tư vào việc thu thập dữ liệu quy mô lớn và các công ty như Figure, Dyna và PI sẽ sử dụng học tăng cường (RL) Công nghệ tiên tiến đã đạt được tỷ lệ thành công hơn 99% trong các tình huống ứng dụng thực tế khác nhau. Ngoài ra, những tiến bộ trong công nghệ bộ nhớ đã phá vỡ “bức tường bộ nhớ”, ReMEmber của NVIDIA sử dụng điều hướng dựa trên bộ nhớ, Titans và MIRAS đạt được bộ nhớ thời gian thử nghiệm và các mô hình định vị ảo (VLM) tốt hơn có nghĩa là mảng định vị ảo (VLA) có khả năng hiểu không gian tốt hơn, cũng như các quy trình xử lý và chú thích dữ liệu có thể cải thiện đáng kể thông lượng. Vào năm 2025, thị trường ban đầu sẽ đánh giá cao khả năng lập bản đồ khả năng không bắn, độ nhạy của cường độ thị giác và suy luận vật lý chung do quy mô dữ liệu mang lại, và quy mô dữ liệu AI vật lý sẽ mở rộng gấp 100 lần vào năm 2026.
Xem bản gốc
Trang này có thể chứa nội dung của bên thứ ba, được cung cấp chỉ nhằm mục đích thông tin (không phải là tuyên bố/bảo đảm) và không được coi là sự chứng thực cho quan điểm của Gate hoặc là lời khuyên về tài chính hoặc chuyên môn. Xem Tuyên bố từ chối trách nhiệm để biết chi tiết.
Mechanism Capital đối tác: Quy mô dữ liệu AI thực thể sẽ mở rộng gấp 100 lần vào năm 2026
Theo tin tức vào ngày 2 tháng 1, Andrew Kang, một đối tác tại Mechanism Capital, đã đăng trên nền tảng X rằng vào năm 2025, lĩnh vực robot sẽ giải quyết các thách thức về kiến trúc mô hình và đào tạo lâu dài, đồng thời đạt được tiến bộ đáng kể trong công nghệ thu thập dữ liệu, hiểu chất lượng dữ liệu và xây dựng dữ liệu, giúp các công ty trí tuệ nhân tạo tự tin rằng cuối cùng họ sẽ bắt đầu đầu tư vào việc thu thập dữ liệu quy mô lớn và các công ty như Figure, Dyna và PI sẽ sử dụng học tăng cường (RL) Công nghệ tiên tiến đã đạt được tỷ lệ thành công hơn 99% trong các tình huống ứng dụng thực tế khác nhau. Ngoài ra, những tiến bộ trong công nghệ bộ nhớ đã phá vỡ “bức tường bộ nhớ”, ReMEmber của NVIDIA sử dụng điều hướng dựa trên bộ nhớ, Titans và MIRAS đạt được bộ nhớ thời gian thử nghiệm và các mô hình định vị ảo (VLM) tốt hơn có nghĩa là mảng định vị ảo (VLA) có khả năng hiểu không gian tốt hơn, cũng như các quy trình xử lý và chú thích dữ liệu có thể cải thiện đáng kể thông lượng. Vào năm 2025, thị trường ban đầu sẽ đánh giá cao khả năng lập bản đồ khả năng không bắn, độ nhạy của cường độ thị giác và suy luận vật lý chung do quy mô dữ liệu mang lại, và quy mô dữ liệu AI vật lý sẽ mở rộng gấp 100 lần vào năm 2026.